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NATIONAL ADVISORY COMMITTEE FORCAERONAUTICS

TECHNICAL MEMORANDUM 1341

& APPROXIWE HYDRODYNAMIC DESIGN OF A FINITE SPAN HYDROFOIL*,.

By A. N. Vladimirov

suMMARY

Some problems concerning the motions of a hydrofoil are discussed.
The results of theoretical investigations on motions of different bodies
under a free surface of a heavy perfect fluid are revised, and for all
cases diagrams of forces acting on moving bodies are given. The problem
solved by Lamb for the motion of a circular cylinder and several problems
solved during the last three years in the Central Aero-Hydrodynamical
Institute (Moscow) are discussed. The latter are: the work by L.
Sretensky on the motion of a vortex, the work by N. Kotchin on the mo-
tion of an arbitrary contour of streamline form (in the present article
only a particular case of motion of a circular cylinder with a circula-
tion around it is discussed) , and the work by M. Keldysh and M.
Lavrentiev on the motion of a plate and a circular aerofoil.

.-

The analytical solution of the problem of motion of a plate is
applied to an approximate hydrodynamic design of a hydrofoil, and on the
basis of this solution diagrams are plotted allowing the determination of
the lift and wave resistance of an infinite span hydrofoil during its
motion in a fluid without friction.

Further, some considerations of the viscosity effect are given and
a method of taking into account the finite span of the hydrofoil is
suggested where an attempt is made at an approximate consideration of the
effect of a free surface on the downwash behind a hydrofoil.

Further, some descriptions and experimental data for a hydrofoil
tested in the CAHI tank are given and a comparison of theoretical with
experimental data is made.

The described work forms a basis for an approximate hydrodynamic
design of a finite span hydrofoil for small angles of incidence and for
depths of immersion equaling and somewhat exceeding the chord length.

*Priblizhennyi gidrodinamicheskii raschet podvodnogo kryla konechnogo
razmakha. Central Aero-Hydrodynamical Institute, Report 311, 1937.
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INTRODUCTION

The hydrodynamic supporting forces act only on the lower surface of
a planing boat. The supporting wings of airplanes are subject to the
action of pressure forces on the lower surface and to suction forces on
the upper surface. The motion of a planing profile inclined at a small
sngle of attack and the motion of the same body in infinite flow are
considered here. The analogy established by Wagner (ref. 1) exists
between the two flows considered.

From this analogy, with an accuracy up to second-order smallness,
it follows that a planing foil during its motion is acted upon by a lift
force A, a spray-forming resistance r, and the sum of all other resist-
ances R, while a vane moving in an infinite flow is acted upon by a lift
force 2A and the sum of all resistances 2R (all measured in kg); that
is, it has no spray-forming resistance.
the planing foil kl is therefore equal

The hydrodynamic efficie~cy of
to

(a)

and the efficiency k2 of the foil entirely submerged is equal to

k2=~ (b)

that is,

kz > kl (c)

Investigations of the problem of increasing the speed of boats and
lowering the power required by mounting hytiofoils on the bottom have
been carried on abroad for some time. Investigations along this line
are also being conducted in this country. The efficiency of hydrofoils

decreases in the presence of the frontal resistance of the supports to
which the vanes are attached. It is therefore desirable that during the
motion of the boat the hydrof’o~ls be located stificiently near the free

water surface. Because of the nearness of the free surface the hydro-
dynamic characteristics of the hydrofoil change; they do not follow the
laws of motion of the same hydrofoil in an infinite fluid. The need
therefore arises for an available method for the hydrodynamic computa-
tion of a hydrofoil on the basis of which the designer, by a computational
procedure, could obtain the hydrodynamic polar curves of the foil selected
for its motion at various depths of submersion. It is customary for the
designer to have available the aerodynamic polar curves for the hydrofoil
of interest.

If a body of streamlined shape, for example, a wing, moves in an
infinite real fluid, the effect of the gravity force which shows up in

.,,. ,,., . . —_I
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the Archimedean law of buoy.~cy can very simply be taken into account and
only the effect of the forces of inertia and viscosity need be considered.
There the~ holds true the.well-kno~ Recnolds law of similitude on the
basis””of which the forces exerted by the fluid on the wing or body are
expressed by the formulas

Lift force A = Cypsvz

Frontal resistance R = Cxpsvz

[NACA Translator’s note: The more generally used coefficients today
(1951) are twice the magnitude of the coefficients used in this report,
since p is now replaced by p/2.]

where the nondimensional coefficients Cy ad Cx are functions of the

Reynolds number and the shape and position of the body. The scheme of
an infinite flow of a weightless liquid is adopted in problems in which
the flight dynamics of an airplane at large distance from the ground are
considered. In studying the motion of a wing near the free surface of
the water, it is necessary to take into account the action of the force
of gravity on the fluid, because the wave disturbances of the free surface
behind the wing alter in a fundamental way the hydrodynamics of the lat-
ter. It is known that in this case of motion, the forces exerted on the
wing by the water are expressed by the formulas given. The nondimensional
coefficients Cy and Cx, however, will in this case be functions not

only of the Reynolds number but also of the Froude number. In the for-
eign literature on theoretical hydrodynamics there is very little infor-
mation on the motions of bodies under the free surface of a heavy fluid.
There is a particular lack of information on the problems of the motion
of underwater wings (hydrofoils), and the papers available refer only to
the circular cylinder. In regard to the history of this problem, a quo-
tation is presented from the work of L. N. Sretensky (ref. 2):

“The problem here studied (the flow of a heavy fluid about an immersed
circular cylinder)l is presented in literature. The problem was first
posed by Keldysh in 1904 and was first solved by Lamb (ref. 3). The
solution, given by Lamb, is-approximate and consists of the addition to
the potential of the infinite flow of a correction term, the object of
which is to satisfy the condition at the surface. The introduction of
this term, however, disturbs the conditions of flow about the cylinder.

“The next step in the solution of the problem was taken by Havelock
(ref. 4). Making use of the methods of conformal mapping, Havelock
extended the equation of Lamb by the addition of new terms with the pur-
pose of setting up the conditions of flow about the cylinder. The SOIU-

tion of Havelock is also approximate, but the method indicated by him

%?he remark in parentheses is ours.
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can give an unlimited approximation to the complete solution of the prob-
lem if the extreme complexity of the formulas is disregarded. And fur-
ther on, Lamb .md HaveIock, in presenting their approximate formulas,
entirely omitted the velocity circulation about the cylinder.”

There is still another series of papers by Havelock in which con-
sidered motions which give rise to the formation of waves are considered,
but only the solution for the wave resistance is sought. Experimental
work on hydrofoils has been carried out abroad, but the vanes were consid-
ered only in combination with vsrious types of boats. No test data on
isolated hydrofoils have been reported.

For the last three years work on the problem of the motion of bodies
under the surface of a heavy fluid has mde considerable progress at the
CAHI . Approximate solutions have been given of the problems of the mo-
tion of a circular cylinder, a cylinder with velocity circulation about
it, a thin plate, a circular disk, and, finally, an arbitrary profile of
streamline shape. The workers at the CAHI test tank conducted tests in

1935 on the isolated underwater hydrofoil. The foil was towed at various
angles of attack under various loads and measurements were made of the
hydrodynamic forces (the lift and frontal drag) acting on the foil. The
theoretical and experimental data available have been used in the present
paper for investigating the essential character of the hydrodynamics of
hydrofoils and for working out a method of the approximate hydrodynamic
solution.

BRIEF REVIEW OF RESULTS OF THEORETICAL WORK

Only the theoretical investigations of interest for present purposes
are considered. The feature common to all these investigations is the
statement of the problem and the assumptions which make the solution ap-
proximate but permit reducing it to practical formulas. The authors con-
sider the rectilinear and uniform motion of a body in a heavy, ideal, incom-
pressible fluid at a certain depth from its free surface. Below the free
surface the fluid is infinite in extent. The flow is assumed irrotational
and most frequently plane-parallel. The boundary condition for the free

surface is satisfied on the line of the undisturbed free surface. The

velocities of the fluid particles on the free surface are so small that
their squares may be neglected. Since the fluid is an ideal one and the
flow possesses a potential, the frontal resistance encountered by the
moving body is the wave resistance. If the fluid is infinite there is

no wave resistance. In all the solutions given by the authors, the change

i.nthe lift force on the body with change of depth of submersion is set
up and in each individual case the law of this change is given. Individ-

ual problems will now be considered.
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Lamb considered the motion of a circular cylinder of radius r at.
the distance h from the free surface. The flow at a large distance
from-the cy’linderhas the velocity, V; there is no circulation about the.-.
cylinder. The same case of motion was considered by M. V. Keldysh (ref.
5) . The formulas obtained by Keldysh are the following:

2gh-—

()

3
R= 4fi2pa2 _&e

V2

v’) (2)

where

A lift of cylinder, kg

R wave resistance, kg

a Vr2

v velocity of flow at infinity, m/see

r radius of cylinder, m

d diameter of cylinder, m

h distance from level of undisturbed surface, m

P“ mass density of fluid, kg sec2/m4

g acceleration of gravity, m/sec2

n ratio of circumference of circle to diameter

Eil integral exponent of function (refs. 6 and 7)

The same notation will be used in what follows. The system of co-
ordinates connected with the body is chosen in the usual manner; that is,
the positive half-axis of ordinates y is directed upward and the posi-
tive half-axis of abscissas x is to the right. The flow past the cyl-
inder is from left to right; the cylinder itself is stationary and its
center has the coordinates x = 0, y = -h. The x-axis is placed along
the free surface of the undisturbed fluid. As may be seen from formula

(l), the lift force of the cylinder, for infinite submersion, is equal to

—
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zero; that is, there is no velocity circulation about the cylinder. As
the cylinder nears the free surface there first appears an insignificantly
small positive lift force which then goes over into a negative one. The
negative lift force increases monotonically in absolute value with de-
creasing depth. This is confirmed by the following considerations:

There follows from formula (1)

A= -4fipa2~f(-c)
~6

where

Since

(d)

(e)

(f)

(d

where C is the Euler constant, it is clear that for small T

f(z) > 0 (h)

To small values of z there correspond small values of the depth
h; therefore near the free surface the lift force of the cylinder is
negative.

For very lsrge ‘c there is the asymptotic equation

Substituting this value of ilE (%) in the expression for f(~)
gives

f(d=-$-~+.. .-

from which it is clear that for lsrge z

(i)

(J)

f(’c)< 0 (k)

.
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Hence, for sufficiently large depth, the lift force of the cylinder
is positive.

-... In order to study the behavior of the function f(z)}. . _,

f.’(z) = e-T Eil(~) -~ ---~ -~ (2)~2

must be found and the function g(’c)= e%f’(z)

must be investigated. The range of small z is
for small z, Eil(~) is of the order of in (’c),

g(T) < 0

and that

(m)

considered first. Since
it is clear that

g’(t) = e=(%+3’0
Hence g(~) increases monotonically in the range of small ‘c.

The rsnge of very large T is now considered. For this r~ge,

( )g(T) .e=~+T~+2-J-+. ..+

(n)

(o)

(P)

that is,

g(-c) > 0 (d

Hence g(z), and therefore f’(~), are negative in a certain interval
o<’r<zo and positive for ‘r>To; that is, f(z) at first decreases and

then increases.

In figure 1 is plotted a curve which shows that at a very large
depth the lift force of the cylinder is positive smd has a msximum at
‘c= 3.8, that is, at the depth h = 3.8 V2/2g; at z = 2.8, that is, at
the depth h = 2.8 V2/2g, the lift force of the cylinder becomes zero,
and with further decrease of the depth it becomes negative.

Nondimensional magnitudes are used to construct the curves charac-
terizing the hydrodynamic forces acting on the cylinder. The following
concepts are introduced:

.—.— . . .,,, --- . .. . .. . . ,,,,,,.,. -..., ——--— ----- -.. —. . ,-. —
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(r)

the

and
the

ratio

the nondimensional coefficients of
cylinder

Cyh = +
pdV

the

From equations (1) and (2) are obtained

Crh

lift and wave resistance of

Ra!—
pdV2

(s)

r

2
F-2-—

>F-6 e
k

Crh =

The curves of
of the ratio h/d

the lift coefficients of the
for two values of the Froude

(3)

<
F-2

( )]
k Eil ~

(4)

cylinder as a function
number are constructed

on the basis of”formula (3) as shown in figure 2. The position of tan-
gency of the cylinder to the undisturbed free surface corresponds to the
ratio h/d = 0.5. As may be seen from the constructed curves the coeffi-
cients of the lift force directed downward attain their largest values
near the free surface, exceeding the maximum values of the lift coeffi-
cients of airfoils. As has been stated previously, the curves must
intersect the axis of abscissas. The points of intersection were not
shown on the figurej since fOr V/@d = 1.59 Cyh = O Only fOr
h/d = 6.2; and for V/&d= 5.0, Cyh= O for h/d= 70.

The maxima of the positive lift coefficients are vanishingly small.

The curves of the coefficients of the wave resistance of the cyl-
inder as a function of the Froude number for various ratios d/h are
constructed on the basis of formula (4) in figure 3.

The position of contact of the cylinder relative to the undisturbed
free surface corresponds to the ratio d/h= 2. Each curve of wave
resistance coefficients has one maximum, the position of which is deter-
mined by the ratio

F = l/@
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The wave resistance
respect to the velocity,

9

itself for h = constant has a maximum with
and the position

v.@

Far behind the cylinder the equation
form

gh.=

of this maximum is given by

of the wave surface has the

4figrze Vz sin ~y..—
+’ V2

The maximum of the wave resistance corresponds to the
of the wave which, as is easily seen, occurs at v=~.
of propagation of the waves is equal to V and the length

(5)

maximum height
The velocity
of the wave is

With this, the description of the results obtained for the motion of
a circulsr cylinder without circulation is concluded.

The problem of the motion of a circulsx cylinder has also been solved
by Sretensky. In it he introduced the circulation about the cylinder.
The approximate solution obtained by the author justifies the conclusion
that a cylinder with circulation produces the same flow disturbance as a
vortex placed at the ssme depth. This result was obtained because for
the degree of accuracy assumed by the author the terms which characterize
the motion of the cylinder without circulation were rejected. Since the
results of the work of N. E. Kotchin who retained the terms of Lamb in
the problem solved by Sretensky are to be presented, the solution of
Sretensky will be considered as the solution of the problem of the motion
of a vortex qesr the free surface of a cylinder. The formulas obtained
by Sretensky have the form

[ 2gh-— .1

[

A=-pI’V-pr2 -&-~e
Vz

Ei
(J

2gh

# 17

2gh

()

~2-~
R=pgVe

where r in square meters per second is
in its motion in an infinite flow.

The system of coordinates is chosen
The positive value of the circulation I’

(6)

(7)

the circulation about the vortex

as in the preceding problem.
corresponds to the counter
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clockwise rotation (if the velocity of the approaching flow is directed
from the left to the right of the observer). Hence, the sign of the
Joukowsky lift force (prV) is opposite to the sign of the circulation.
For constructing the graphs characterizing the hydrodynamic forces acting
on the vortex, we go over, as in the preceding problem, to the nondimen-
sional magnitudes F and k. But for this purpose we first replaced,
for convenience, the vortex by the supporting wing having the same cir-
culation. On the basis of the Joukowsky theorem on
and the formula expressing the lift in terms of the
ficient Cy, we then obtain

r = CybV = fiabV

where b is the chord of the wing in meters and a,
attack of the wing in radisms.

After all transformations

Crh
cy2m

the lift of a wing
nondimensional coef-

(t)

is the angle of

have been made, formulas (6) and (7) give

1-—
2

1
=—

2

where F = V/~~2gb and k = b/h.

The curves characterizing the

(8)

F ‘2
-—

F-2e k (9)

change of the excess lift force of
the wing, that is, the total lift after subtraction of the Joukowsky

lift, are constructed as a function of the ratio h/b for two Froude

numbers on the basis of formula (8) in figure 4. The constructed curves

show that the free surface of the fluid gives rise to the appearance of
an additional lift force (besides the Joukowsky force), the direction of
which does not depend on the sign @ the circulation (as is Cl=rlY s-n
from the structure of formula (6)). For small ratios h/b this addi-

tional lift force is directed downward; it then passes through zero and
becomes positive. After forming a positive maximum it asymptotically

approaches zero. On the basis of formula (9) there are constructed on
figure 5 the curves characterizing the change in the coefficients of
total resistance of the wing as a function of the Froude number for
various values of the ratio b/h. Each curve has one maximum, the posi-

tion of which is determined by the ratio F = l/*.

The wave resistance itself, as a function of the velocity, does not
have a maximum and increases with increase in the velocity, asymptotically
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approaching a constant value. This occurs because for a wing the circu-
lation is proportional to the velocity only if the angle of attack and
the chord are constant. If, however, the motion of a vortex is consider-
ed and the fact that the circulation about it r = constant is taken
into account, the wave resistance, as a function of the velocity, will
have a maximum, the position of which is determined by the relation

Far behind the vortex, the equation of the wave surface is of the
form

y.
2re
v

. sin (9a)

The msximum of the wave resistance corresponds to the maximum of the
wave height, which, as is easily seen, occurs for V = @h. The veloc-
ity of propagation of the wave is equal to V snd the wavelength

k= 2flv2/g.

With this the description of the results obtained by L. N. Sretensky
for the motion of a vortex is concluded.

N. E. Kotchin (ref. 8) gave general formulas for the hydrodynamic
forces acting on profiles of arbitrary shape in a flow and selected the
particular case of the motion of a cylinder of radius r with velocitv
circulation r
ular case have

A= Prv -4fia2p

~r2

about it. The formuias obtained by him for this psrti~-
the form

2gr2

V2h

g-—

T(V2
+

1
m

e Ei
1

J

(lo)

— .—.
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2gh

()

3
R

-~
= 4fi2,a2p~ e

~2

The system of coordinates
but the direction of motion is
Joukowsky lift force therefore
If in formulas (10) and (11) r
terms not depending on r, and

2gh 2gh

r2 ‘~
()

-—

+ Pg T,
+ 4flpg2r2r e V2

e (11)
~3

is chosen as in the preceding problems,
opposite to the others. The sign of the
agrees tith the sign of the circulation.
is set equal to 0, there remain only
the formulas agree with formulas (1) and

(2) for the forces-acting- on the cylinder wit~out circulation. If in
formulas (10) and (11) r is set equal to O, there remain the terms not
depending on r and the formulas agree with formulas (6) and (7) for the
forces acting on a vortex.

The hydrodynamic forces acting on a cylinder with circulation will
be described in somewhat greater detail. Formula (10) for the lift force
may be written in the following form:

A= prv+~+Ar+~r (12)

where prv is the Joukowsky lift force~ Ar is the lift force of a cyl-
inder of radius r without circulation (the same as by formula (1)), and
Ar is the lift force of a vortex (the same as by formula (6)), and

~,
2gh

2
-—

Arr =
()

+ 2gr2 4g2r2 e V2 ~ 2gh I-Pr~ ;~—-—
(+I (u)

V2h v’
il V2

~ J

that is, the lift force depending simultaneously on the radius of the
cylinder and on the circulation about it.

From the preceding, the variations of the forces Ar and Ar are
known . For very large depths of submersion of the cylinder, the force
Arr has the same direction as the Joukowsky lift force; while for small
depths it has the opposite direction.

For an explanation of this, it is necessary to consider the sign of
the brackets in the expression for Arr.

Setting

2gh
~=~

leads to an investigation of the function

f(%) = ~+~ - e-z Eil(T)
2T

(v)

(w)
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It is evident that, for small ‘r,

,..,... .-,. f(-c)> 0

since Eil(’c) is of the order of

For large ‘c,the asymptotic

is used to obtain

f(%) = - -L
2T2

so that

in(z) .

formula

2! 3!
-— .—. . . .

=3 =4

f(z) < 0

Forging the derivative f’(~) and investigating the function

I-3

(x)

(Y)

(z)

(a’)

g(’T)= e=f’(z) show that f’(~) < 0 in a certain interval () < ~ <T.

and f’(~) > 0 for T >Z(). Hence f(~) at first decreases and then
increases, having a negative minimum.

Formula (11) for the wave resistance may be written in the form

R =Rr+Rr+Rrr (13)

where

Rr wave resistance of cylinder of radius r without circulation (same
as by formula (2))

Rr wave resistace of a vortex (same as by formula (7))

2gh

R
4fipg2r2r e- F

rr = ~3
(b’)

and the wave resistance depends simultaneously on the radius of the cyl-
inder and on the circulation about it. For negative circulation the last
part of the wave resistance Rrr is also negative, and therefore the wave
resistance of a cylinder with positive circulation is greater than the
wave resistance of a cylinder with negative circulation. From formula

(11) it also follows that under certain conditions of motion of the cyl-
inder at a finite depth its wave resistsmce may be equal to zero. This
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will evidently occur when the wave behind the cylinder will have a height
equal to zero. Since the problem is solved on the basis of the linear
theory of waves, the 6quati.onof the waves behind a cylinder with circu-
lation can be obtained by tsking the sum of the amplitudes of the waves
behind a cylinder without circulation and behind a vortex. The right
sides of equations (5) and (9a) are combined to obtain the equation of
the waves behind a cylinder with circulation:

(14)

The condition of motion for which the wave resistance of a cylinder
with circulation is equal to zero is obtained by assuming the amplitude

Y=o”

r
2figr2=-

v

The same relation could have been obtained directly if the right
side of expression (11) were set equal to zero. It is necessary to
remark, however, that this condition does not give anything of practical
value because it entirely fails to correspond to the real conditions of
motion, at least in that the circulation I’,and therefore the lift force,

is negative.

In figure 6 the curves of the lift force and wave resistance of a
cylinder of radius 0.1 meter with circulation I’= 0.25 square meter per
second are constructed as a function of the submersion h for constant
velocity of motion V = 6 meters per second. The forces A and R are
represented by their component parts. In figure 7 analogous curves are
constructed for the same cylinder but with negative circulation,
r = -0.25 square meter per second. The forces %) Ar, afid ~r on

these curves do not become zero because the zero points lie at a depth
greater than 1 meter. The curves are given as an illustration of what has
been said concerning the forces acting on a cylinder with circulation.
With this, the description of the results obtained by N. E. Kotchin for
the motion of a cylinder with circulation is complete.

The formulas for the hydrodynamic forces acting on a cylinder with
circulation may be used to find the forces acting on a foil of chord b
at singleof attack a moving with velocity V at depth h. For this
purpose, the wing is replaced by a cylinder of diameter equal to the
chord of the foil multiplied by a. The motion of the foil is considered
under such small angles of attack that in the formulas for the forces it
is possible to neglect the terms containing G of degree higher than the
second. Substituting in formulas (10) and (11) the values d = ab and
r = fiubv gives the formulas for the lift and wave resistance of a foil:
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. ..-——. .,. ,{[

2gh

A=
-bgn~bV21 -u-&—-e

-FE

..(. j].

2gh

V2
il

7
(I-5)

2gh

R = fi2u2pgb2 e
-~

(16)

In these formulas only the terms depending on the circulation about
the foil were retained, that is, the possibility of neglecting the terms
with degree of a higher than the second justifies replacing the foil by
a vortex. If the motion of the foil is considered at somewhat greater
angles of attack, when in the formulas for the forces it is possible to
neglect only the terms containing u of degree higher than the third,
then formulas (10) and (11) after substitution of d = ab and r = fiabV
give

{[

2gh-—
bg v2~__A= fi~bV2 1 - u & -— e

(i

2gh

V2 ‘1 V2

2gh 2gh
-— -7

R fi2a2pgb2 e
~z

= + ti2a3pg2b3~ e ‘z
V2

In these formulas only the Lamb terms are rejected.
terms will be retained when it is necessary to tslseinto
fourth power of u; that is, the motion of a wing having
b is considered.

(18)

The rejected
account the
a large value of

The last paper to be presented is that of Keldysh and Lavrentiev
(ref. 9) on the motion of a thin contour under the free surface of a heavy
fluid. The circulation consists of a system of vortices replacing the
contour. The distribution of the vortices is such that one of the crit-
ical points is located at the rear edge of the contour. The circulation
is therefore determined, and the hydrodynamic forces acting on the contour
in its motion in the flow are expressed in terms of the geometric param-
eters defining the dimensions and position of the foil, that is, in terms
of its chord and the angle of attack. The formulas obtained by the authors
for the lift force and the wave resistance of a plane foil have the form
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.

{

2gh 4gh
- ~ b2 gb2 + ~2#b2 ~ ~2 +

.—
figb ~

Asy(~bV2 l-— -— -—
V2 16h2 4V2h V4

2gh 2gh

g2b2 ~- ~ ~

()[

-—
2gh b 2gb ~

()

2gh@E_—
~v4 il ~ -Z%-~ il V2

2gh 4gh-—
ngb2

()

4 + 2gh ~ V2 + 4fig2b2 ~- ~

( j}

2gh

F
‘il ~ (19)

4V2h +

2gh

{

2gh-— -—

R = fi2u2pgb2e
V2 ~

[

2figbe V2 +a gb b-—
V2 ~ -z+

and the simplified formulas

{

2gh

[

_ 2gh-—

21-— figb~ V2 b 2gb e ~ E.A= mpbV
( !]

2gh

V2 ‘x-~
(21)

11 ~

2gh_—

R = n2a2pgb2 e V2 (22)

Formulas (19) and (20) entirely agree with the formulas obtained if
the aforementioned general solution of N. E. Kotchin on the motion of a
contour of sxbitrary shape is applied to the case of the plane foil.

Expressions (19) and (20) for the forces acting on the foil are
approximate since they were obtained on the basis of the linear theory of
waves, but they are, of course, closer approximations than the formulas
(15) to (18) which were obtained by replacing tinefoil by a circular cyl-
inder with circulation. This is explained by the fact that a cylinder
with circulation is a system of a double source and vortex concentrated
at one point, and no account is taken of the extension of the foil in
the direction of the chord.
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The expression for the forces acting on the foil, replaced by a
system of vortices, is used for the approximate hydrodynamic computation
of m underwater foil having infinite span. The lift force will be com-—--

‘ puted by’formula (19) smd the wave resistance by the simplified formula
(22) which was obtained by replacing the wingby a vortex. The computa.
tion of the wave resistance by the more accurate formula (20) is of
practically no advsntage in view of the smallness of the terms which
render it different from formula (22) . Before the computation itself is
presented, the difference is discussed between formula (18) of the wave
resistance of a foil derived by replacing the wing by a cylinder with
circulation and formula (21), obtained from the condition of replacing
the foil by a system of vortices. On
expression for the coefficient of the
by a cylinder with circulation is

Crh = ~m2

where

the basis of formula (18); the -
wave resistance of a foil replaced

+ Nra3 (23)

T7
F-2

%=&-2 e-T

that is, for a
resistance for
negative angle

It is evident that, for all
ratio b/h,

Mr>O

Hence, with the coefficient
function of the amgle of attack,

values of the

and Nr>O

(24)

(25)

Froude number and the

of the wave resistance considered as a

Crh(a) > Crh(”) (c’)

wing replaced by a cylinder with circulation, the wave
a positive angle of attack is always greater than for a
of attack. On the basis of formula (20), an expression

for the coefficients of the wave resistance of a foil replaced by a system
of vortices is

Crh = kf,&2+ Nrcx3 (26)

where

.—.
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1#
F-2

(

F-2

%“~F-2’-T 1-’F-2’-T ) (27)

I/
~ -2

[

F ‘2
_—

Nr s ~F-2e k‘— ~F-2 -~k+F-2e k E.
F-2 1

(i
11 y (28)

If as before

2gh
—=%
V2

(d’)

the sign of the brackets in the expression for Nr(28) always agrees with
the sign of the expression

f(’c)=%+4Te ‘TEil(~) - 2 (28a)

Therefore

Formula (28) is

cr~(u) > Crh(+) if f(~) > 0 (e’)

crh(~) < Crh(-a) if f(~) < 0 (f’)

used as a basis for constructing the curve of f(%)
on figure 8. However, in both cases the effect of the terms Nr is
very small.

Three series of hydrodynamic polars of a hydrovane are constructed
on the basis of formulas (19) and (22) on figure 9 to indicate the gen-
eral form of the hydrodynamic forces acting on the foil in its motion
nesr the free surface of an ideal fluid. Each series corresponds to a
definite constant Froude nu?iber. The different polars of a single series
correspond to different values of the ratio b/h . The dotted curves pass
through the points of the same angles of attack. For all Froude numbers
an increase of the ratio b/h (which for constmt b corresponds to a
decrease in the depth of submersion) gives rise to a decrease in the
absolute values of the lift coefficients and an increase in the wave
resistance coefficients. The coefficient Crh does not depend on the
sign of the angle of attack since the additonal terms were neglected,
while Cyh for a negative angle of attack is always greater in absolute
value than it is for a positive angle. The effect of an increase in the
Froude nuniber is to decrease the coefficients of the wave resistance of
the foil while increasing the coefficients of the lift force in absolute
vshe. This completes the review of results of theoretical work on the
motion of bodies under the free surface of a heavy fluid.
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CONSTRUCTION

FOIL IN A

FO?.TKlhLS (19) and

19

OF COMPUTATIONAL GRAPHS FOR MOTION OF A

PLANE -PARALLEL FLOW OF AN IDEAL FLUID

(22) are applied to the determination of the lift
force and wave resistance of hydrofoils. For this purpose the nondimen-
SiOIld lift coefficient C.h and wave resist~ce Crh are employed.
From formulas (19) and (22~,

Cyh = fia(M - Nu) (29)

2gh_—

Crh
~ ~2a2 @ e V2

~2 (30)

where

2gh 4gh.— 2gh.—
ngb e V2

M=l-—
~2 gb2 + fi2g2b2 e V2 + g2b2 ~- ~ ~

()

2gh\-— _—
~2 16h2 4V2h ~4 2v4 il ~

(31)

The question arises as to whether formulas (29) and (30), derived
for plates, may be applied to the arbitrsry profiles of hydrofoils. It
is evident that they may more reliably be used for the computati.onof thin
symmetrical profiles. In general, in the computation of each profile
having a cross section different from that of plates, it is necessary to
remember the following: In expression (29) the factor fi~ is the coeffi-
cient of the lift force of any profile in its motion in an ideal fluid
for h = CO. Formula (29) may therefore be written in the form

In the computation
take not the magnitude

Cyh = CY=(M - NcL) (33)

of definite profiles for C it is necessary to
fia,but the wind tunnel res~~ts for this profile,

—. .—-—. —.—.-. ———. —-— ..-——-——.
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the lift coefficients having first been computed for infinite span. In
this manner the shape of the profile will be approximately taken into
account. The section devoted to the consideration of the effect of the
viscosity of the fluid will discuss this

Formula (30) for the coefficient of
sented in the form:

further.

wave resistance may be repre-

2gh.—

Crh = Cyz= ~ e
~2

~z

The Cy2~ does not represent the magnitude
the actual resistance coefficiat of the wing of

(34)

fizuz,but the square of
infinite spa. Graphs

were constructed for the convenient and rapid application of formulas
(33) and (34) to the hydrodynamic computation of the hydrofoils. The
magnitudes M and N sre plotted as functions of the Froude number on
the basis of formulas (31) and (32) for various values of the ratio b/h

(figs. 10 and 11) to aid in computing the lift coefficients. To compute
the coefficients of the wave resistance, the curves Crh/Cy2= were con-

structed on the basis of formula (34) also as a function of the Froude
number for various ratios b/h (fig. 12) . The variations of the mag-
nitudes F and k in the constructed graphs were taken in ranges which
permitted obtaining the lift force and the wave resistance of hydrofoils
of infinite span for all cases of motion of practical interest. The

graphs constructed on figures 10, 11, and 12 representing formulas (33)
and (34) thus permit obtaining approximately the lift force and wave re-
sistance of a foil of infinite span moving near the free surface of an
ideal fluid provided the lift coefficient for the motion of the wing in
an infinite flow is known (e.g., from wind tunnel test data).

Effect of Viscosity of Fluid

A method for taking into account the effect of the viscosity of the
fluid is now considered. The lift force of a foil in its motion in a
real fluid depends little on the viscosity of the fluid since the lift of
the foil is entirely determined by the potential circulatory flow about
it. The viscosity appears to be only one of the factors giving rise to
the circulation (ref. 10). The lift of the foil may therefore be obtained

by the classical methods of hydrodynamics without introducing any correc-
tions for the viscosity. A confirmation of this statement may be found

in the comparison of the theoretical md experimental results on the
determination of the lift of the wing. Betz (ref. 11), for ex~le,

carried out a computation of the pressures on the surface of wings of the
Joukowsky type on the basis of the potential flow of am ideal fluid about
the wing. He also made a comparison between his obtained results and

— I



NACA TM 1341 21

experimental data for the sane wings. Good agreement was obtained. The
slight increase of the theoretical lift force above that actually obtained
.is eqlained as caused by a separation of the flow which occurs at the
upper surface of-the ~~ not fti ’from it’s‘traili& edge “and th”is somewhat
lowers the total pressure on the wing. All that has been said relative
to the small dependence of the magnitude of the lift force of the wi~ on
the viscosity of the fluid refers to the motion in an infinite flow. In
the motion of the wing near a free surface, however, the effect of the
viscosity on the lift force may likewise be regarded as practically
absent because the change in the lift of the wing in its motion at a
finite depth is brought about by a different pressure distribution on the
wing different from the distribution which occurs in the motion at in-
finite depth (and gives the Joukowsky theorem). The other pressure dis-
tribution is due to the fact that the wave disturbances of the fluid
remain behind and is not connected with the viscosity. It is true that
in a real fluid the wave disturbances sre dsmped, but this damping may be
neglected for the case of water.

In the preceding section it was stated that cyan does not represent
the magnitude ma but rather the result of wind tunnel tests on the foil.
With this understood, the change in the lift of the wing due to the effect
of the viscosity in its motion in an infinite flow is taken into account.
The fact that no added corrections are msde for the effect of the viscos-
ity on the lift of the wing means only that the effect of the free sur-
face on the lift is not connected with the viscosity. Thus in computing
the lift force of a hydrofoil moving in a real fluid it is permissible to
use the formula obtained for em ideal fluid without introducing any cor-
rections for the viscosity except interchanging ITU with the magnitude
Cym obtained experimentally.

Accounting for the viscosity of the fluid for a certain total frontal
resistance of the hydrofoil must be considered. For the present, the
well-known considerations for the case of motion of a wing in an infinite
flow are adduced. If the fluid is an ideal one, the foil during its mo-
tion is net subject to any frontal resistance, since it is known that in
a potential flow the pressure at the forward part of the wing is equal in
magnitude to the pressure at the sfter part. By a potential flow is here
meant a nonsepsrated, nonvertical flow about the foil. The viscosity of
the fluid is primsrily the cause of the appearance of frictional resist-
ance which is represented by the sum of the horizontal components of the
forces tangential to the surface of the foil. Moreover, the viscosity
brings about a general change in the potential flow about the wing. To
these chsnges must be ascribed the formation of the boundary layer and
the appearance of circulatory motions. Because of these changes in the
flow, there is a change in the initial pressure distribution over the
wing such that a frontal pressure resistance appears. The pressure
resistance, together with the frictional resistance, is termed the form
resistance. For wings of finite span the form resistance is divided into
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the profile and induced resistances. As has already been said at the
beginning of this paper, in the motion of a wing in an infinite flow the
fluid may be considered as weightless and the Reynolds law of motion will
then be valid. For the total frontal resistance of the wing the Reynolds
law of motion gives the formula

R = Cxpsvz

where the resistace coefficient Cx is a function of the shape of the
foil, its position in the flow, and the Reynolds number. The similitude
law of Reynolds consists of the following: If two wings are geometrically
similar and their similar elements are inclined by equal angles to the
direction of motion, and if the Reynolds numbers are equal, then there is
complete similarity of the motions. In this case the drag coefficients
for the two wings sre the same. The values of the resistance coefficients
of the wing for the different angles of attack are obtained from model
tests in the wind tunnel, the tests being conducted at some single value
of the Reynolds number near full scale. This is sufficient for the reason
that at large mgles of attack the drag coefficient depends little on the
Reynolds number, while at small angles of attack when the flow is poten-
tial and the resistance is practically only the frictional drag, a cor-
rection for the change in the Reynolds number may be made by the known
formulas for the resistance of a flat plate. It is understood, of
course, that test results are entirely applicable when the foil model
is tested for different values of the Reynolds number.

The motion of a wing in a real fluid near its free surface is now
considered. Total frontal resistance of the foil is represented as the
sum of three resistances: frictional, pressure, and wave resistances,
although, generally speakingj such decomposition must not be made. It
would be more correct to combine the pressure and wave resistsmces into
one since they are similar in character; that is, they are brought about
by the forces normal to the surface of the foil. Such formal decomposi-
tion must be considered, however, because of the absence at the present
time of a solution of the problem of the motion of a foil near a free
surface of a heavy real fluid. The manner in which the form resistance,
that is, the pressure and frictional resistance considered apart from the
wave resistance, vsries in the transition of the foil from an infinite
flow to the region nesr a free surface must be studied. The distribution
of the streamlines changes and the velocity of the flow about the foil
will be different. These changes in the flow give rise to changes in the
frictional and pressure resistances; that is, it is necessary to take into
account the fact that the dependence of the form resistance coefficient
on the Reynolds number will be different from the corresponding relation
for the motion of the same foil in an infinite flow. In reference to the
nonvalidity of the separation of the wave resistance from the”pressure
resistance, there is no experimental possibility of separating these two
resistances from each other and thereby obtaining the dependence of the
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form resist~ce coefficient on the Reynolds number. On the basis of all
that has been said there remains only the possibility of assuming that
the coefficient of form resistance is the ssme as in the motion of the
foil at infinite depth as it is at finite depth (of course, for the ssme
R“ey?iolds’-ntibers)and “that its dependence on the Reynolds number is in
both cases expressed by the same law.

It can be said that the wave resistance arises from only the force
of gravity and vanishes with increasing depth although the fluid continues
to remain viscous. In a viscous, incompressible, heavy but infinite
fluid, waves behind the moving foil cannot arise because their formation
necessitates two layers of fluid of different densities. The viscosity
will not be considered as the damping factor of the wave motions, since
the motion of the wing in water where such damping maybe practically
neglected is considred. In this manner the wave resistance of the foil
is assumed to not depend on the viscosity; snd for determining the mag-
nitude of the wave resistance, use is msde of the theoretical formula
obtained for the motion in an ideal fluid. For determining the over-all
frontal resistsmce of a hydrofoil of infinite span, it is necessary to
add to the wave resistance the form resistance, which is obtained from
aerodynamic wind tunnel tests on the wing, initially computed for infinite
span . If the data are available, corrections are made on the form resist-
ance thus obtained for different Reynolds numbers in tests on the foil in
a tunnel in relation to its motion in water.

Effect of the Finite Span of Hydrofoil

The finiteness of the span in its motion in an infinite fluid is
taken into account by applying the theory of bound and free vortices.
This theory was developed by L. Prandtl. The basis for this theory is
the theorem of Joukowsky on the lift force of a wing applied to a wing
of finite span and the theorem of Helmholtz on vortices. The physical
picture of the formation of vortices may be obtained from the following
considerations: In the presence of a ltit force on the wing and there-
fore of a circulatory flow about it, there is a difference between the
pressures on the upper and lower surfaces of the wing. Hence, at the
tips of the wing the fluid will move from one surface onto the other in
the direction of lower pressure. This transition of the fluid, because
of its steady character, gives rise to the formation of a system of free
vortices. Since, according to the theorem of Helmholtz, the vortices
consist of the same particles of the fluid, the wing in its motion leaves
behind it free vortices having a length equal to the path traversed by
the wing. By the theorem of Helmholtz, the vortices cannot break away
within the fluid; hence in the motion of the wing in an infinite flow the
vortices either travel on with their ends at infinity or adhere to each
other behind the wing to form closed systems. In the presence of a free

surface of the fluid, the vortices may support themselves on the free
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system of free vortices leads to the motion of the surround-
gives rise to a deflection or downwash of the flow approach-
The downwash decreases the actual angle of attack and de-

flects the lift force behind the perpendicular drawn to the true direction
of the motion of the wing. The projection of the lift force thus deflected
on the direction of motion is the induced resistance of the wing. It is
identical with the energy required to maintain the motion of the vortices.
For all practical cases of the motion of a wing, the free vortices may be
taken as half-filsments, that is, may be assumed as infinitely long, not-
withstanding the finite interval of time from the starting instant of the
motion. Actually, the velocity W induced by a segment of length c of
the free vortex at a point distant h from its forward end is expressed
by the formula

We=—” b:h ~czc+hz
If C= =, that is, the vortex is a half-filament, then

Set c = nh smd obtain

If, for exsmple, n = 5, that
as large as h, Wc/W==0.98;

vortex of length c = 5h is

w==&

the ratio We/W=:

.-

(35)

(36)

(g’)

is, if the length of the vortex is five times
that is, the velocity induced by a finite
98 percent of the velocity induced at the

same point by a half-filament. If the free vortex is supported on the
free surface, its final length may be assumed as equal to a half-filament,
since the point of support of the vortex remains in its place while the
wing moves; therefore the length of the vortex rapidly attains practically
an infinitely large value. The quantitative results of the theory of
induced resistance are based on the magnitude of the induced velocity due
to a straight vortex half-filament at any point of the surrounding fluid.
For an infinite flow this velocity is expressed by formula (36). For a
free vortex shed from the foil in its motion near a free surface, formula
(36) is no longer applicable because the usual circular distribution of
the streamlines about the vortex will be distorted by the presence of the
free surface, snd the magnitude of the induced velocity at any point of
the fluid will therefore be other than in an infinite flow. The effect

of the finite span of a hydrofoil is now considered. For simplicity, the

wing of finite span is replaced by a horseshoe vortex which will consist
of the actual vortices satisfying the theorem of Helmholtz. The horseshoe
vortex moves near the free surface of the fluid. The resistance of the
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free vortex is determined by theoretical formula (34) and there remains
only to take into account the chsmge in the flow about the principal
vortex produced by the presence of the two free-vortex filaments remaining
behind the foil. By the theorem of Hetioltz the vortices consist of the
same particles of fluid, so that the free vortices do not follow behind
the foil; that is, they do not have the property of forward motion in the
direction of motion of the foil. If the effect of the free surface on
the velocity field about the free vortices behind the foil is accurately
taken into account, the problem will be a three-dimensional one. Wave
disturbances remain behind the foil, and, considering some cross section
of the free vortices in a plane perpendicular to the direction of motion
of the foil, the level of the liquid will fluctuate because of waves from
the foil. This wave motion will be neglected, however, and in considering
the section of the free vortices in the above-mentioned plsne, it is
assumed that the foil does not leave behind it any wave disturbances; the
problem will thus be a two-dimensional one. Moreover, the vortices are
assumed to be stationary relative to the disturbed free surface. Each
vortex is, in fact, situated in the velocity field of the other vortex
and therefore they both have a tendency to move in a direction opposite
to the direction of the lift force. This motion will be neglected in the
same way it was in considering the flow downwash in aerodynamics. The
free vortex is then considered as rigidly attached at the depth h under
the free surface of the fluid.

Depending on the strength of the vortex, there will exist two limit-
ing boundary conditions for the free surface of the fluid. For small
values of circulation, the first boundary condition, which consists of the
requirement that vertical velocities of the particles of the fluid on its
free surface be absent, is obtained. In this case the free surface may be
replaced by a rigid wall and the effect of the free vortex, by the effect
of a pair of vortices of equal strength situated symmetrically with re-
spect to the rigid wall and rotating in opposite directions. For large
values of circulation, the second boundary condition, which consists of
the requirement that horizontal velocities on the free surface be absent,
is obtained. In this case the effect of the free vortex may be replaced
by the effect of a vortex pair of equal strength situated symmetrically
relative to the undisturbed free surface but rotating in the same direc-
tion. For the practical cases of motion of hydrofoils, the first boundary
condition is more nesrly applicable; but we shall nevertheless present
both variants for taking into account the finiteness of the span in cor-
respondence with the two boundary conditions with a view toward evaluating
these variants in considering experimental data. The direct computation
of the velocity induced by the free vortex will be discussed next. The
characteristic stream function for a vortex pair of opposite rotation
located at the points

x =0, y=-ih and x=O, y=ih

where X+iy= z, has the form
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h = zfi~
z+hi

-%lz
- hi (37)

The characteristic stream function for a vortex pair of the same direc-
tion of rotation located at the same points is

w2=& hl(Z2 + h2) (38)

Consider the point of the fluid lying at the distance h from the
level of the undisturbed free surface with abscissa x and find the
velocity induced by the half vortex at this point. For this purpose the
well-known relation

dw
-X=u-iv (39)

is used, where u is the horizontal velocity of the particles of the
fluid, and v is the vertical velocity of the particles.

Applying this preceding relation
the corresponding vertical velocities

to formulas (37) and (38) gives
induced by the half vortices:

x

)
(40)

X2 + 4h2

(41)

In the case of the infinite flow, that is, for h = CO,the expression

v = r/4fix

would be obtained in place of expressions (40) and (41).

Consider the foil at depth h with two free vortices trailing from
its edges. Let the span of the foil be equal to Z. In order to avoid

obtaining, in the further computation, an infinitely large mean induced
velocity over the foil span, it is necesssry to assume that the distance

between the free vortices 2’ > 2. On the basis of equations (40) and

(41), the mean value of the induced velocity over the wing span is
obtained:

[

21+2_~

1

t2 + 22 + 22t + 4h2
Vm+ ln— – in

21 - 1 ‘2 t2 + 4h2
(42)
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where

t
‘l-z=

2
(h’)

-4, ..,.. .... ............... .

The minus sign refers to the first variant and the plus sign, to the
second variant for taking into account the effect of the finite span.

It is known from

whence

Moreover, in the
magnitude t2 may be

tests that for the majority of foils,

(i’)

t ~ 0.0252 (j’)

numerator of the second term of expression (42) the
neglected because of its smallness. Then

r
[
4;;ln 122+2zt + 4h2

‘m=~
t2 + 4h2

. .
(43)

Replacing t by 0.025 2 in expression (43) and introducing the
chord of the foil b, the ratio k = b/h, and the aspect ratio k = 2/b
give the final expression for the mean induced velocity over the foil
span

Vm=g

For an infinite flow,
formula

The downwash angle of

[

~ 05x2k2 + 4
l;~ln “ 10.000625k2k2 + 4

the induced velocity is computed by the

Vm= 2r/fi2

the flOW ~+h

(coefficient of induced drag) can now%
physical sense of the downwash sngle and
to be

and the induced drag Cih
readily found according to
the coefficient of induced

v.

where V- is the velocity of motion of the foil.
expression (44) for the mean induced velocity, the
downwash ale smi induced drsg of the foil moving
free surface are found to be

(44)

the
drag

(k’)

Hence, on the basis of
expressions for the
at depth h from the

1 .—



28 NACA TM 1341

Zcyh

[

~ih.~ 1$ ;In 1.05A2k2 + 4

0.000625A2k2 + 41
2cyh2

[
~ln 1.05X2k2 + 4

Cih= ~A 178 0.000625A2k2 + 41

(45)

(46)

As seen from formulas (45) and (46), the angle of downwash and the
induced drag of an underwater foil are either smaller or greater than the
values of these magnitudes in the motion of a foil in an infinite flow
depending upon the vortex scheme applied - either a vortex pair of oppo-
site direction of rotation or one of the ssme direction of rotation. On
figure 13 have been constructed the curves ~ih/Pi~= f(h/b) for X = 6
for the two variants under consideration. The same curves represent, of
course, also the relation

(z’)

To reduce the computation of the angle of downwash and the induced
drag of a hydrofoil according to formulas (45) and (46), these formulas
are rewritten in the form

2C h
$ih = *(lTg)

2C2 h
c~~ = +(l+E)

where

~ 05A2k2 + 4
E :ln “=-

0.000625k2k2 + 4

(45a)

(46a)

(46b)

On figure 14 the magnitude ~ has been constructed as a function of
the product Xk= Z/h. The use of this curve in the computation is clear
from formulas (45a) and (46a).

Next, the relative error incurred if the usual formulas are used for
determining the downwash angle and the induced drag of a hydrovane, with
no account taken of the effect of the free surface on the magnitude of
the induced velocity, will be obtained. For this purpose the following
table is used:
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A a l~b b/h = 0.5 b/h = 1.0

I Method III I I11
,,, ,,.. .-, .- ,., 2 ‘“ ‘‘-’ 3’ ““ ““3’”“- 11 9

5 15 11 33 20
10 , 33 20 67 29
15 52 25 111 34

T1I 11

’25 17
67 29
93 32
190 40

For the vsrious aspect ratios of the wing A and ratio of wing
chord to depth, the relative error is computed in percent for the down-
wash angle and the induced drag of the hydrofoil, using in place of
formulas (45) and (46) the aerodynamic formulas. As may be seen, the
relative error may attain a lsrge value at large values of b/h, that is,
near the free surface. The relative error increases with increasing A
but the absolute values of the sngle of downwash and the induced drag
decrease, and therefore the absolute error decreases with increasing 1.
In considering the problem of accounting for the finiteness of the span
of the hydrofoil, the following should be added: ‘Thedownwash angle and
the induced drag of hydrofoils must, as a rule, be determined by formulas
(45) and (46) because the aerodynamic formulas would give a considerable
error even for submersions equal to twice the chord of the wing. Such
depth of submersion is already equal to the maximum suitable for use.
Before anything can be said in regard to the final choice of boundary
condition on the free surface determining the direction of rotation of a
fictitious vortex,
mutational example

In 1935 tests
the CAHI tank on a

the experimental resuits must be considered. A com-
of a hydrofoil will be given also.

TANK TEST ON A HYDROFOIL

were conducted by A. N. Vladimirov and V. G. Frolov at
plane underwater foil. The object of the test was to

obtain the hydrodynamic characteristics of the foil at various submersions
with a view toward mounting this foil on a seaplane. A thin synnuetrical
NACA 0.0009 profile of rectangular plan form having a chord b = 0.14
meter, span Z = 0.84 meter, and therefore aspect ratio X = 6 was tested.
The thickness of the foil was 9 percent of the chord. On figure 15 are
given the coordinates of this profile taken from the mentioned report.
On figure 16 are given the aerodynamic characteristics of the profile
obtained in the high pressure wind tunnel for a value of Reynolds number
of 3.2x106, whereby A and R sre denoted, as everywhere below,
A= c@v2 andR= CNSV2 . For the tests in the tsmk the foil of the
given dimensions was constructed of kolchugaluminum (an aluminum alloy)
and was supported by two steel brackets which at their bases were fitted
into the body of the foil from above, being attached to them by counter-
sunk rivets and having at the places of juncture with the surface of the
foil a smooth form. The scheme of arrangement of the brackets on the
foil is shown in figure 17. The test was conducted on a special apparatus
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which permitted measuring the lift and the frontal resistance of the foil
with the brackets. The moment due to the hydrodynamic forces was not
measured. The test setup is given on figure 18. The”upper hinge axis
of the vertical frsme of the apparatus had one degree of freedom, that
is, it could be displaced over an arc of sufficiently lsrge radius. The
impossibility of the deflection of the vertical frame toward one side was
secured by a special device. For this reason the foil, being itself at
constant angle of attack, that is, immovably connected with the vertical
frame, had two degrees of freedom. The angle of attack of the foil was
determined with an accuracy up to *8 minutes. The required depth of
submersion of the foil was first approximately determined at standstill
and in motion was measured with an accuracy up to *1 millimeter. By the
depth of submersion of the foil is meant the distance of the geometric
center of the foil from the level of the undisturbed free surface. The
total frontal resistance of the foil with the submerged part of the
brackets was measured by a contact dynamometer of the Gebers system. To
the drum of this dynamometer was attached the towing rope, care being
taken that the rope was always horizontal during the motion. Since the
vertical frsme was subjected to pressure from the air stream, this part
of the resistance was experimentally taken into account. The hydrodynamic
lift force of the foil was measured by a spring dynamometer with an
accuracy up to ~1 kilogram. For this purpose one measurement was made at
standstill, that is, the load on the foil (weight of the structure) was
determined, and another measurement was made during motion. The differ-
ence between the values of these measurements gave the magnitude of the
lift force of the foil. The box on the vertical frame shown in the
sketch was intended for the loads in the case where the positive lift
(force directed upward) exceeded the weight of the structure. The length
of the towing rope was so regulated that the axis of the principal frame
of the apparatus occupied a vertical position. In the test setup used

there was only one position of the foil when its center of pressure was
displaced away from the vertical. The lift force was then somewhat de-
flected and therefore gave an additional resistance, which was taken into
account by a special correction. The frontal resistance of the hydrofoil
without support brackets was determined as the difference between the
measured resistance of the foil with the brackets and the resistance of
the brackets. The resistance of the brackets was computed by the formula
R= c@Sv2, and Cx was determined from the air polars since the brackets
constituted aeronautical profiles. The srea S of the brackets was a
function of the depth of submersion of the foil. It was assumed that

there was no interference effect between the foil and the brackets. Since
a wave remained after each test, an interval was required between the
tests during which the surface of the water regained its calm.

,,,

The basic tests were conducted at constant towing velocity V = 6
meters per second. The depth of submersion of the foil was varied over
a range from zero to the chord of the foil, and angle of attack was var-
ied from -18° to +18°. For small submersions the tests were restricted
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to small angles of attack in order to maintain as far as possible complete
submersion of the foil. Since the actual towing velocity for each test
differed from V = 6 meters per second with a deviation up to 0.2 meter.>.,–-
per ‘second’in either direction, all values of the lift force end resist-
ance of the foil obtained in the measurements were recomputed for V = 6
meters per second on the assumption that in the interval of deviation of
the velocity the hydrodynamic forces acting on the foil were proportional
to the squsre of the velocity.” Positive angle of attack was assumed in
the usual sense of this term. For exsmple, at an angle of attack of +lZO
the lift of the foil is directed upward; at -12° it is directed downward.
In addition to tests at constant velocity, curves were obtained for the
lift and drag of the foil as functions of the velocity for two different
submersions hl and ~. The angle of attack was here taken as constsnt

and equal to 4°, and the velocity was varied in the range from 2 to 12
meters per second in 2-meter-per-second increments. All tests were con-
ducted for constsmt submersion of the foil, that is, for each run the
amount by which the load exceeded the lift was determined and the raising
or submersion of the foil during the motion occurred only tithin the
limits of the compression or extension of’the springs of the dynamometer
measuring the lift. The results of the tests on the hydrofoil are pre-
sented in the figures. On figures 19 and 20 sre constructed the curves of
the lift force A (in kg) snd frontal drag R (in kg) of the hydrofoil
as a function of the depth of submersion h (in m) for various sngles of
attack a, for constant towing velocity V = 6 meters per second. On
figure 21 are constructed the curves of hydrodynamic efficiency of the
hydrofoil as a function of the depth of submersion for two angles of
attack a = +4° and a= -40. In this case, too, the towing velocity
was constant (V = 6 m/see). On figures 22 and 23 sre constructed the
curves of the lift force A (in kg) and frontal resistsmce R (in kg) of
the hydrofoil as a function of the towing velocity for two different
submersions hl = 41 snd h2 = 82 millimeters. The angle of attack was

here constant and equal to 4°. For the present, an analysis of the
experimental data obtained is not of concern, and the characteristic
features of the constructed curves will not be explained; the discussion
will be restricted to the presentation of the data. A comparison will
subsequently be presented of the theoretical and experimental data, snd
it will then be easier to note the laws which govern the hydrodynamics
of a hydrofoil.

The data obtained from the tank tests on the hydrofoil were valuable
in that they brought out with particular clearness the effect of the most
importmt factor, namely, the depth of submersion. The fact that the
test was made on a thin symmetrical profile was a favorable circumstance.
As a result, the conditions of the test very closely approached those for
which the problem was theoretically solved. These favorable conditions

were obtained in other tests on hydrofoils. For example, in the tank at
Dumbarton (ref. 13), tests were conducted on a series of profiles for the
scale effect, a part of the profiles being tested in a vertical position
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and a part in a horizontal. The chord of the profiles tested in the
horizontal position was equal to 16 centimeters and the submersion was
constant at 60 centimeters, almost four times as large as the chord.
The tests on the profiles under the free surface of water were in gen-
eral repeated several times for the purpose of investigating the per-
formance of propellers. The free surface of the water was, however, a
necessity only in that it was unavoidable, and attempts were msde to go
as far as possible below the surface. In the present tests, however, an
attempt was made to approach nearer the surface, and for this reason the
possibility existed of clarifying the effect of the free surface and of
comparing the experimental results with the theoretical.

HYDRODYNAMIC COMPUTATION PROCEDURE FOR THE HYDROFOIL

The first step is to recompute the air polars of the hydrofoil pro-
file from finite to infinite span. On figure 24 are shown the curves of
the lift coefficient of the foil for A = 6 and the recomputed values
for 1= -. The foil of infinite span has no induced drag so that the
profile drag of the foil for X = m is obtained from the total drag for

x= 6 with the induced drag subtracted. After proceeding to the motion
of the foil in a plane-parallel flow, the foil is transferred from the
air to the water for, at first, infinitely great depth. There is a change
in Reynolds number which, in agreement with a preceding section, must be
taken into account. The air polar was obtained for a value Re = 3.2xM$.

In the water there is first of all a change in the coefficient of
kinematic viscosity v. For a temperature of the tank t = 180 C,

v 0.013 (cm2/see). Since the foil chord b = 14 centimeters, the ve-
lo;ity V = 600 centimeters per second is the following value for the
Reynolds number Re = V-b/v= cJ.6x@5.

The lift force of the foil is assumed not to change with the change
in Reynolds number, and only the profile drag and that part of the pro-
file which constitutes the friction drag sre recomputed. The formula of
Prandtl for the frictional drag coefficient of
this purpose (ref. 14). This formula includes
the Reynolds numbers under consideration. The
the form

1700

Cf=s-=

plane surfaces is used for
the range of motion for
formula of Prandtl is of

(47)

Recomputing by this formula the frictional drag of the foil gives
the curve of profile drag for water. In figure 25 are constructed the
profile drag curves for water smd for air as functions of the angle of
attack.

. . .
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It should be remarked that the efficiency of the profile according
to wind tunnel test data at the Reynolds number Re = 3.2x106 was equal
to 23 at an angle of attack of 4°. The hydrodynamic efficiency of the

,.,,, ssme profilefortheReynolds number Re --O.6X1O6 was equal.to 18.2 as
a result of the increase in the profile drag.

It is interesting to note that if the coefficient of the frictional
drag of the foil is determined in its motion in air by formula (47), that
is, for the ssme Reynolds number for which the air polar was obtained,
then

while the
attack is

actual profile drag
equal to

100 Cf = 0.32

coefficient of the foil for zero angle of

100 Cf = 0.40

as seen from figure 25.

The total drag of the foil in its motion in air at
attack consists therefore of 80 percent frictional drag

zero sngle of
and 20 percent

pressure drag srising from the thickness of the foil. At the same time,
the value 100 Cf = 0.32 indicates the good agreement of the value of
Cf obtained by the formula of Prandtl with the actual values and justi-
fies the application of the Prandtl formula.

Since curves for the different towing velocities are still required,
the curve of the profile drag of the foil as a function of the velocity
in water at angle of attack of 4° has been constructed on figure 26.
After the first stsge of the computation, the hydrodynamic forces acting
on a foil of infinite span moving in an idinite fluid sre known.

It is now
surface of the
the lift force
coefficient of
formula

and the graphs

necessary to consider the motion of the foil when near the
water.
of the
a foil

For this motion waves are formed behind the foil,
foil changes, and a wave drsg appears. The lift
moving at depth h is obtained by means of the

c
yh

= Cy~M - Nu) (33)

shown in figures 10 and 11. The value Cv. entering the
formula is taken from the curve for A = o shown in fig~e 24. The
coefficient of wave resistance of the foil is obtained by means of the
formula

I



34

2gh.—

c ~2@ev2
rh = y-v2

NACA TM 1341

(34)

and the curves constructed in figure 12.

In the tank tests on the hydrofoil, the depth of submersion was var-
ied starting from zero. For comparison, however, the theoretical curves
were constructed for only the submersion starting from 50 millimeters}
since for smaller submersions formulas (33) and (34) will not give a
correct result because the

and terms of higher degree
may therefore be used only
least the inequality

term

(b/2h)3

were neglected in these formulas. The formulas
for those values of b/2h which satisfy at

b/2h <’1

Since the chord of the foil was b = 140 millimeters, the limiting case
obtained for which these formulas may still be considered as valid is for
a value of the submersion depth of

h =70mm

In the computations deviations are made from the value h = 70 milli-
meters by another 20 millimeters. A closer approach to the free surface
does not give anything even formally$ since for this value M and N
approach infinitely large values. The hydrodynamic forces acting on a
foil of infinite span moving near the free surface of the water are now
known .

The finite span of the foil must be taken into account; the change
of its lift force due to downwash and the value of the induced drag are
determined. The correction for the finiteness of the span was made for
two variants corresponding to the two boundary conditions at the free
surface. For the first variant, in which the free surface is replaced by
a rigid wall, the dowxwash angle 13i

f
is always less at finite depth

than the downwash angle for infinite y large depth. In both cases, of
course, the same lift force is considered. For the second variant, in
which the effect of the free surface is replaced by the effect of a vortex
pair rotating in the ssme direction, the downwash ~le Pih at finite
depth is always greater than the corresponding angle at infinitely lsrge
depth, again for the same lift forces.

The downwash angle behind the foil is found from the formula

2Cyh
~ih=~(l~~) (45a)
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and the curve on figure 14, where the magnitude ~ entering formula
(45a) has been constructed as a functi,onof the product kk. For the

>.. foil tested in the tanl.,,~= 6 .aK@ k= b/h ,depend,oq,those depths h
for which computational data are to be obtained. For each d’epth of sub-
mersion h there is a different downwash angle. The difference between
one vsriant and the other is the fact that for the same depth of submer-
sion of the foil, different values of the downwash angle are obtained.
Having, for a given depth h, the lift curve of a foil of infinite span
as a function of the angle of attack and knowing for this depth the mag-
nitude of the downwash angle it is easy
force against the angle of attack for a
for this purpose of the usual graphical
The computation is therefore individual

The formula

to construct the curve of lift
foil of finite span, making use
methods applied in aerodynamics.
for each depth.

(46a)

and the curve ~ = f(kk) constructed in figure 14 are used to determine
the induced drag of the foil. The computation is again conducted for
each depth and, since the magnitude ~ entering the formula for Cih is
known, no difficulties are encountered. It is here likewise necessary to
make use of the graphical methods applied in aerodynamics. A comparison
of the theoretical curves with the experimentally obtained data will now
be made.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The lift forces are considered first. On figure 27 sre given the
theoretical curves for the lift force coefficients of the foil as a func-
tion of the submersion h in millimeters, and the test points are shown
in the same figure. All data were reduced to the velocity V = 6 meters
per second. There may first of all be observed the qualitative agreement.
The lift force of a hydrofoil at all angles of attack decreases in abso-
lute value with decrease in depth of submersion. A somewhat different
character is possessed by the curve for zero sngle of attack where the
reverse phenomenon is indicated. Theoretically, for negative angles of
attack the lift force should be greater than for the positive in absolute
value, but this was not cofiirmed experimentally. In general, it must
be said that the quantitative agreement of the theoretical with the ex-
perimental results is better the smaller the angle of attack and the
larger the depth of submersion. This is understandable since the theo-
retical solution based on the linearized wave theory gives a better
approximation when the foil produces a small disturbance. Best agreement
of the results is givenby the first variant (~~h< ~i~.
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Two theoretical curves and one experimental curve for the constant
depth of submersion h = 82 millimeters and constant angle of attack 4°
are constructed on figure 28 for comparison; these curves show the effect
of the velocity of motion of the foil on its lift coefficient. From
theoretical considerations it follows that the lift coefficient of the
foil should increase with increasing velocity. The experimental curve
actually has this tendency; however, it is only weakly indicated. The
quantitative agreement very clearly spesks in favor of the first variant

(~ih< ~i~) -

The data on the total drag of the hydrofoil are now compared. The
theoretical curves of the coefficients of total drag of the foil are
constructed as a function of the submersion h for the constant velocity
of motion V = 6 meters per second on figure 29, and on the same figure
are shown the test points. First noted is a characteristic feature of
the theoretical smd experimental results, namely, the increase of the
drag coefficient of the foil with increase in depth of submersion. The
increase is ascribed to the increase in the induced drag of the foil
corresponding to the increase of its lift force with increased submersion.
It is seen that starting from a certain depth the increase in the drag is
discontinued and a drop begins as a result of the decreasing wave resist-
ance. That such is the case is clesr from the mutual positions of the
curves zmd asymptotes. The quantitative agreement for positive angles of
attack is as before better the smaller the sngle of attack and the greater
the depth of submersion. In comparing the drag for negative angles of
attack, the opposite result is obtained. From the theoretical curves, it
follows that

Cxh(a) < c~h(+)

which is explained by the fact that theoretically the lift force is
greater for negative than for positive angles of attack, a fact which
gives rise to the corresponding inequality in the induced drags. Experi-
ment shows, howeva, that

Cxh(ct)> c~h(d

In the given case the experimental data obtained are assumed to be cor-
rect and the following explsmation is given:

First of all, it is assumed that in taking account of the finite
span the free surface is replaced by a solid wall. As has previously

been pointed out, the downwash angle then decreases with approach of the
foil (and therefore also the free vortices) to the surface; and for
h+O, @ih alSO +0. It was remarked also that the free vortices must
possess a motion directed opposite to the lift force. Hence, for nega-
tive angles of attack the free vortices moving upward may approach very
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near the free surface of the water and the downwash angle, and therefore
also the induced drag, will be very small. From this it follows that the
total drag..of.,,thehydrofoil for negative angles of attack will always be
less than for positive angles. There is, unfortunately, as yet, no math-
ematical theory of this problem, nor does the possibility exist, on the
basis of the above supposition, of finding the relation between the mag-
nitude of the downwash angle for negative angle of attack smd the depth
of submersion of the foil.

On figure 30 are constructed two theoretical curves, and the test
points of the drag coefficients of the foil are plotted for a constant
submersion of the foil h = 82 millimeters and constant angle of attack
ho. From these data it is possible to learn the effect of the velocity
of motion of the foil on its total drag coefficient. The theoretical
curves give a decrease in Cxh with increase in velocity and a sharp
increase in Cxh at small velocities. This is explained by the fact
that for small Froude numbers, the coefficients of wave drag sharply
increase. This was not confirmed experimentally. In the range of veloc-
ities starting from V = 6 meters per second and higher, good quantita-
tive agreement is observed between the experimental data and the theoret-
ical curve for the first variant (Pih< 111~).

On figure 31 are given the theoretical curves of the hydrodynamic
efficiency of the hydrofoil as a function of the depth h for a = 4°
and velocity V = 6 meters per second. The test points are indicated
also. The position of the test points confirms the general character of
the theoretical curves. The quantitative agreement is better for the
curve of the first variant, as has already been observed for the curves
used as a basis for obtaining the curves of hydrodynamic efficiency.

On figure 32 the two diagrams are constructed so as to illustrate
clearly the relations and changes in the parts of the total drag of the
hydrofoil with change in depth of submersion of the wing. The curves
are theoretically constructed for angle of attack u = 4° and velocity
v = 6 meters per second.

CONCLUSIONS

The comparison here given between the experimental and theoretical
results of an investigation of the hydrodynamic forces acting on a hydro-
foil has shown that the theoretical solution based on the theory of small
waves gives an essentially correct representation of the phenomena OCcur-
ring in the actual motion. The agreement of the results is less favorable
with increase in angle of attack (in absolute value) and decrease in
depth of submersion.
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An attempt has been made in this paper to take into account approx-
imately the finite span of the hydrofoil. The proposed method of finding
the sngle of downwash behind the hydrofoil is given simultaneously in two
variants . For the velocities of motion considered the more accurate
variant is that in which the free surface of the fluid is replaced by a
rigid wall.

The viscosity of the fluid is tsken into account in the usual msnner,
which is also approximate.

On the basis of the results obtained, it may be said that a reliable
hydrodynamic computation of a hydrofoil may be made for those conditions
of motion for which the absolute value of angle of attack is small and
the depth of submersion is not less than the chord of the hydrofoil.
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TABLE I. - VALUES OF M AND N FOR FORMUIA (33)
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TABLE II. - Concluded. VALUES OF Cr#Cj
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1.75

1.50

0,!31

7.50

5.00

4.(M)

3,1k)

1,30

1,00

084

0,70

().60

0.50

0.40

7,50

5.00

4,00

3.00

2,50

2.00

1.75

I,50

0.79

0.50

III. - V&L{

0.691

1.000

]y2s

1.510

!.170

0,0s7

0,191

(),294

0.505

0.705

1,032

],~75

1.590

2.430

2,340

2,320

1,Stio

1.190

O.CWO

0,087

0,193

0,296

0.510

0,715

1.057

1.311

1.660

2.W

0.I62

SOF$F~

k=+

1,8

2.0

FORMULJ

FOR FORMUIA (34)

F=~—
Jf2gb

7.50

5.00

4.00

3.00

2.50

2.00

1.75

1,50

0,74

0.50

7.50

5.00

4.00

3.~lf.)

~,,~,)

2.00

1.7j

I.50

1.20

1.00

0.80

0.70

0.60

0.50

0.45

().40

0.30

(45a) AND ~

. ..
I.()

I

O:(W3 1 20

I

0:57.5
2.0 0.090 ~fi 0.6X)
5,() 0.252 :Jo 0.670

0.08i

()*1(j:j

0.298

0.51,5

0.72:%

1,072

1w)

1.7113

3.260

?.17{)

0.087

0.193

0,298

0,,517

O.i:w

1,(J!H)

1.365

I.750

2.400

3,020

3.560

3.6d0

3.440

2,660

1,950

0,124

0,020

6a)
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TABLE IV. - HYDRODYNAMICCM.RICTIII/ISTICS OF HYDROFOILWSURED

#

7 .. ’--,

2

lint

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

?6

27

28

29

30

31

32

33

34

35

.jm,6ec

6.07

6.05

6.04

(W

6,01

6,0s

6,03

6.O(i

6.06

6,05

6,05

6,04

6,08

6.06

6,10

6.05

6,0.>

~i,ol;

(i,o[;

6.06

6,05

6,03

6,04

6,01

5,95

5.94

5,94

5,93

6,01

6,01

5,94

5,93

5.94

5.98

6.22

h,mm

*2

*2

1

0

–5

11

11

9

8

5

7

5

17

19

22

12

42

41

38

36

18

80

75

67

58

58

51

59

85

87

82

69

68

83

83

IN TOM

o

-2

2

4

8

–2

o

2

4
~

8

8

4

2

0

–2

–2

o

2

4

8

0

4

8

12

16

17.5

14

—4

—8

–!2

–i6

–18

—16 .5

—16 .5

1 ‘I!EST

R, kg

1.74

1.18

2.90

4,79

:J,m

2.38

1.52

1.6!!

2.19

&q3

8.h7

10..55

2.39

1.W

1,3.3

1,87

1.76

IJ4

l.al

2,82

6,79

1.48

3,68

9.16

27.11

41.28

44,85

37.33

2,60

6,62

!8.05

38,61

37.54

49,18

46,65

—

. .

— 15

—4

24

– 40

_ 19

2

24

Ii

39

lb

:{1

7

— 11

— 31

-3— ,)

—3

20

39

10

>

50

92

121

1~1

11(;

1.;1

— 4!

— w-l

—l:\;

—1.jl;

— :)(;

—1(;7

—Ilil

Blues of

for.
@m/see,

E

1,70

i.16

2.96

4,79

9,60

2.33

1,49

1,58

2.14

8,$0

8,46

10,4

2,26

1,58

1,2s

1,83

1,73

1,41

1,77

2,76

(;,64

1.46

3,62

9,16

27,5

42,0

45.6

S8,2

Q..l!)

(i,li.!

ls,!

:;\),.1

38

49,2

44,2

dues of
for
Am/see,

r

—

—

– 14.8

—4

24

— 39.(;

— 18.6

1,95

23,4

16,7

5X

15.7

29.4

6,s

— 10.li

– 30,4

— 22,5

— 2,Ni

19,5

3s

9,7

1,97

4g,2

91

123

1~1

11s

1:3!

— 4.3,s

— s.*

--I39

--159

— !);

– 168

–149.5

43
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TABIE IV. - Concluded. HYDRODYNAMIC CHARACTERISTICS OF HYDROFOIL

Point

36

:37

3s

39

40

41

42

43

44

45

46

47

4s
.19

so

.51
~:

!53

54

,’)5

56

:)i

Ss
5!)

60

61
(j)

(is

M

6>

(fi

(i7

G9

69

70

71
72

_...—

T,m/sel

6.15

5.93

~.g~

,i.~<

(i.00

j.$j

5.93

,5.9(;

(;.02

6.04

S.gs

5.97

6.00

6.02

(i.os

6.(),3

(;.04

(i.ol

6.04

,j.!l,!

6,04

6,09

6.OO

6,00

9.95

I,9a

4.05

6.08

8.05

10,10

12,12

2.04

4,12

6.I.3

8.O(i

1IJ.20

l_’,1[1

-—. -.-—-..

h, mm

83

120

1[5

!)7

99

91

91

90

94

125

127

125

Ilg

l]?

150

I42

137

127

121

I23

155

1.-,6

I54

I.-)I

141

43

;J)

43

41

44

35

8.5

8?

81

8Q

85

77

——

–16.5

o

4

8

12

16

16

17.5

14

— 4

— 8

–lo

--16

20

0

4

s

12

1t;

17.5

—4

Y—,

_ly

—16

—1s

4

4

4

4

4

4

4

4

4

4

4

4-

‘OWING

R,kg

4(;.55

1.s2

3.73

10,33

29.38

4’4,4s

44.38

48.17

38.75

2,70

7.18

?1,00

42,86

54,s0

1,72

3,88

10.s0

;10,56

46.70

50,33

2.80

7.68

23.50

4,5..17

.i1,83

().X4

1.25

2.90

4.83

7.18

9.80

0.38

1.60

3,37

5,77

8.41

13!S9

lSTS

a, kg

—161

o

56

I08

146

136

136

I24

145

– 58

-110

–151

—171

—1.51

o

59

113

143

136

1W

— 5.1

–122

—I{j(j

-..]74

—173

4

,7

45

so

121

1(ij

6

~(j

(;()

102

1,58>

240

values oi
R for
V-6m/see,
kg
. ——

44.0

1,<55

3,78

10.40

29+38

45,2

45,2

4s.s

38,5

2,66

7.?

21.2

42.X6

54.4

1,67

3.82

10.6

30.4

46

50.6

2.76

7.43

23,5

4.5.47

52,6

—

—

—

—

—

—

—

—

—

—

—

—

—.
{dues c
4 for
~-6m/se<
:g

—153.4

o

56.8

109

I46

1.38

138

1?6

144

— 57;j

—111

--153

—171

— 1.50

0

58.4

111

142

136

133

– 532

–118

—166

–174
— 17,5

—

—

—

.—

—

—

—

—

—

—

—

—

—
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TABLE V . - CHARACTEROF FLOW ABOUT HYDROFOILIN TANK TESTS

>int Conditionof motion Remarks

., -..-.,
Spray film from leading edge of fOii’
in upward direction.

1
Foil undergoes

vertical vibrationwith amplitudeof 2
millimeters.

h=O, a=-2° Spray film from leadingedge inclined
2 V=6 m/see somewhatbackward..Vertical vibration

as under 1.

h=O, ci=4°,
Spray f’ilm from leadingedge inclined

3 V=6 m/see
somewhatforward. Vibrationof foil
discontinued.

h=ll mm, --2°, From the leadingedge of the foil a
6 V=6 mlsec

film adheringto the upper surface
is formed.

From the trailingedge of the foil a
film is formed having a horizontal

h=5 mm, -8°, direction.
10

From the leadingedge a film
V=6 m/see is formed making with the chord an angle

of 45° and forming a water arch over the
foil.

The flow about the foil is smooth,a
verticalfilm being formed at each bracket.

h=17 mm, G4°, This smoothcharacterof the flow occurs in
13 V=6 m/see all cases where the angle of attack is not

too large and the foil is submergedat a
sufficientdepth.

h=58 mm, 0_=12°, Behind the foil there is a depression
25 V=6 m/see which, after 3 meters, ends in turbulence.

Eehind the foil there is ~depression cov-
h=58 mm, a=16°, ered with jets running off the foil. At a

26 V=6 m/see distanceof about 1 meter the jets are trans-
parent and beyond that point have a foamy
structure.
From the middle of the foil over the e’ritire
span verticalfilamentssimilar to systems of

h=51 m, -17.5°,
27 free vorticesare formed.

V=6 m/see
A group of such

vorticesdoes not adhere stronglyto the foil
and periodicallybreaks away, and in its plac
new vorticesaxe formed.

-l_

From the lower surfaceof the foil (the low-
h=68 mm, a=-18° ~pressure surface),a vortex film periodical:

33 V=6 m/see breaks away as under 27. This phenomenonis
the cause of the vertical. Vibration of the
foil.



46 NACA TM 1341

TABLE V . - Concluded. CHARACTER OF FLOW ABOUT EYDROFOIL IN TANK TESTS

Point
I
Condition of motion

I

h=125 mm,
47 --120,

V=6 m/see

h=1120mm,

49
G-X) ,
V=6 m/see

——— __ ______
61

a=4°
;;

..—.-.——_— ——

Remarks
I

Flow about the foil is smooth. Iimnediately

behind the foil a ridge is formed which at

4

approximately l+ meters becomes a depression.

The same as under 47.

Immediately behind the foil a ridge is formed
going over farther into a depression. Behind
the foil vertical filaments were observed
which, however, started not from the foil itself
but approximately 1 meter behind the foil.

The flow about the foil is smooth. Immediately
behind the foil is a shallow depression ending
in surf.

?he flow about the foil is very smooth and the

:ourse is constant. A small vertical film is
‘ormed at each bracket.

I
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Figure 1. - Effect of T = 2gh/V2 on lift
force of a cylinder without circulation.
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Figure 2. - Dependence of lift force
coefficient of a cylinder without
circulation on h/d andV/~.
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Figure 3. - Dependence of wave drag coefficient of a cylinder

without circulation on d/h andV/~.
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.
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Figure 4. - Dependence of lift of a foil replaced
by a vortex on h/b and V/~.
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Figure 5. - Dependence of wave drag coefficient
of a foil replaced by a vortex on b/h and V/E.
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Figure .6. - Dependence of lift and wave resistance of a cylinder with positive circulation
on depth of submersion.
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Figure 8. - Effect of T = 2gh/V2 on f(~) from formula (28a).

v -/5
Cy ~’ v% =30 *429

-5
Cy gI Cu

Figure 9. - Polars of foil of infinite span moving in ideal fluid.
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Figure 10. - Dependence of principal term of formula (33) on k = b/h andV~.
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Figure 11. - Dependenceof additionalterm of
formula (33) on k = b/h and V/~.

Figure 12. - Dependence of Crh/C~~from formula (34) on k = b/h s
and V/~. s
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Figure 13. - Dependence of ~ih/~ico
from formulas (45) and (46) onh/b
for the two variants to account
for the finite span.
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Figure 14. - Effect of Ah/h= 2/h on the
correction $ from formula (46b). ,
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Figure 15. - Coordinates of symmetrical profile NACA 0.0009.
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Figure 16. - Aerodynamic characteristics of profile NACA 0.0009.
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Figure 17. - Scheme of arrangement of supporting
brackets on hydrofoil.

Instrument for measuring
lift force

Instrument for measuring

depth of submersion of foil

Lever
Instrument for measuring
angle of attack

of attachment of steadying device

... .— ———— -..-—— .—— —

Figure 18. - Set-up for testing the hydrofoil in
tank.
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Figure 19. - Dependence of lift of foil on depth
of submersion and angle of attach for V = 6
meters per second (test data).
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Figure 20. - Dependence of total frontal drag of hydrofoil on depth
of submersion and angle of attack for V = 6 meters per second
(test data).
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Figure 21. - Dependence of hydro-
dynamic efficiency of the
hydrofoil on depth of sub-
mersion for u = f4° and V = 6
meters per second. (test data).

A, kg

0).?3 + ~ 6 7 8 9 10 II 12

Figure 22. - Dependence of lift of hydrofoil on velocity
for u = 4° and for two depths of submersion (test
data) .
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Figure 23. - Dependence of total frontal drag of hydrofoil on velocity for a= 4° and for two depths of submersion

(test data).
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Figure 24. - Aerodynamic lift coefficientsof foil of finite and infinite span, respectively.
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Figure 25. - Dependence of profile drag coefficient

on angle of attack and Reynolds number.

Ioo,cp

1,

0

m/ sec

Figure 26. - Dependence of profile drag coefficient

on velocity for, u = 4°.
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Figure 27. - Comparison of experimentalwith theoreticalresults for lift coefficientsof hydrofoil for two
variants taking into account the finite-span.
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Figure 28. - Comparisonof
for lift coefficientsof
millimeters.

experimental with theoretical results
a hydrofoil for a = 4° and h = 82
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Figure 29. - Comparison of experimental
V = 6 meters per second.
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V, m/see

Figure 30. - Comparison of experimental and theoretical
coefficients of total drag of a hydrofoil for u = 4° and
v = 6 meters per second.

s

Figure 31. - Comparison of experimental and theoretical
hydrodynamic efficiencies of a hydrofoil for a . 4° and
v= 6 meters per second.
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Fi~e 32. - Effect of depth of submersion of a
hydrofoil on the components of its frontal drag
for a = 4°,and V = 6 meters per second, and A = 6

(theoretical data).
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